

Recovery of metals from Deep Eutectic Solvents Stylianos Spathariotis

This project has received funding from the European Union's EU Framework Programme for Research and Innovation Horizon 2020 under Grant Agreement No 721385 <u>https://etn-socrates.eu/</u>

Stirring

- Project aims to gain value from metallurgical residues
- My project is to extract and recover metals from waste using DESs
- Electrodeposition and cementation to reduce metal ions

Deep eutectic solvents

Electrodeposition

- Reversible metals can be electrowon easily with high current efficiency
- Non-reversible/oxophillic metals deposition is very dependent on concentration, stirring and temperature Low current efficiency due to film formation.

Changing experimental parameters can make metals behave in a more reversible way and increase deposition efficiency

Cementation

Redox potentials

Metal in ethaline	E /V
$Cu^{2+} + e^{-} \rightleftharpoons Cu^{+}$	0.39
$Fe^{3+} + e^{-} \rightleftharpoons Fe^{2+}$	0.29
$Ag^+ + e^- \rightleftharpoons Ag^0$	-0.15
Cu⁺ + e⁻ ដ Cu ⁰	-0.42
$Fe^{2+} + 2e^{-} \rightleftharpoons Fe^{0}$	-0.59
Ni ²⁺ + 2e⁻ ដ Ni ⁰	-0.62
$Co^{2+} + 2e^{-} \rightleftharpoons Co^{0}$	-0.64
$Sn^{2+} + 2e^{-} \rightleftharpoons Sn^{0}$	-0.64
$Pb^{2+} + 2e^{-} \rightleftharpoons Pb^{0}$	-0.73
7n ²⁺ + 2e ⁻ → 7n ⁰	-1 12

Wide range of metals able to be cemented with sustained deposition

Cementation on Zn

Cementation is a pseudo first order process (diffusion controlled) Aqueous cementation \rightarrow pH < 4 to prevent passivation DES cementation \rightarrow neutral pH

Oxidation of Zn is so fast, it pits the surface and the reduced metal falls off the substrate as a powder.

Cementation with Zn not driven solely by thermodynamics Potentially side reactions occur e.g. passivation

Cementation works better on metals which do not passivate

Electrochemical dissolution of 500 g Jarosite at the anode Recovered by electrowinning & cementation

Complexing agents can enhance selectivity

- \checkmark DESs can be used for metal deposition
- ✓ Electrodeposition and cementation are linked to reversibility
- ✓ Temperature, stirring and metal concentration affect deposition
- ✓ Efficiency of non reversible metals is low due to passivation
- ✓ Complexing agents can enhance selectivity
- ✓ Potentially useful for secondary metal recovery for high value elements e.g. PCBs

Acknowledgments

• European Union

This project has received funding from the European Union's EU Framework Programme for Research and Innovation Horizon 2020 under Grant Agreement No 721385 <u>https://etn-socrates.eu/</u>

Materials group

• Socrates group

Interested in my work? Contact me ! <u>st.spatha@gmail.com</u>

